ΕΠΙΣΤΡΟΦΗ
Υλοποίηση μέσω γλώσσας Wolfram στο WLJS Notebook .
Μιγαδικοί
Unprotect[Graphics3D];
Graphics3D /: MMAView[Graphics3D[args__, opts: OptionsPattern[] ] ] = .;
Unprotect[ToString];
ToString[expr: _[__], StandardForm] := With[{view = MMAView[expr]}, ExportString[
StringReplace[
(view // ToBoxes) /. {RowBox->RowBoxFlatten} // ToString
, {"\[NoBreak]"->""}]
, "String"]];
Protect[ToString];
Γραφικές παραστάσεις μιγαδικών
Clear["Global`*"]
f[z_] := z^2 - z
ComplexPlot3D[f[z], {z, -2 - 10 I, 2 + 10 I}, PlotLegends -> Automatic]
ComplexPlot[f[z] , {z, -6 - 10 I, 6 + 10 I}, PlotLegends -> Automatic]
ComplexPlot[f[z] , {z, -6 - 10 I, 6 + 10 I}, PlotLegends -> Automatic, Mesh -> Automatic, MeshFunctions -> { Re[#2] &, Im[#2] &}, MeshStyle -> { White, Black}]
Φράκταλ
Clear["Global`*"]
MandelbrotSetPlot[PlotLegends->Automatic]
Clear["Global`*"]
r=10/9;
th=Pi/3;
la=r*(Cos[th]+I*Sin[th]);
JuliaSetPlot[la*(1-z)*z,z,PlotLegends->Automatic]
Static web notebook
Author kkoud
Created Mon 6 Oct 2025 11:35:15
Κώστας Κούδας | © 2025